

sources, ecodynamics and impacts

Mirella Del Nero

EJC 2019, 22-27 september 2019, Oléron

INTRODUCTORY PART WEATHERING & SOIL CHEMISTRY ENVIRONMENTAL RN CHEMISTRY LL RADIOACTIVE WASTES & TENORM IN FRANCE

INTRODUCTORY PART

THE CRITICAL ZONE SOURCES OF RN CHALLENGES : FATE OF RN

What is the Environment?

A very thin pellicle at Earth's surface

Sedimentary

Continental

crust (30-75km)

cover Atmospher (5-15km) d=2. **Biosphere &** d=3,2 hydrosphere d=3,3 d=3 Lithosphere <- MOHO Mantle (upper) 70-150 km Asthenosphere 700 km Mantle (lower) d=5,5 Gutenberg (2885 km) d=9,5 Cor Earth е Structure =11,5 d= 12 5155 km (not to scale)

Oceanic crust

At the interface between lithosphere, hydrosphere, biosphere and atmosphere

The Critical Zone

"A zone where interactions between rock, soil, water, air and living organisms control habitats and life-sustaining resources"

Natural processes & transformations

Rock alteration, soil formation, water and carbon cycle, life growth, biogeochemical cycles

- Time-scale variations
- Spatial variations
- Chemical variations

The Critical Zone

"A zone where interactions between rock, soil, water, air and living organisms control habitats and life-sustaining resources"

Domains of natural waters

Natural processes & transformations

Rock alteration, soil formation, water and carbon cycle, life growth, biogeochemical cycles

- Time-scale variations
- Spatial variations
- Chemical variations

The Critical Zone Environmental soil chemistry

Storage of Carbon

CO2 atm

750 Gt

Decomposing Organisms

Fossil Fuel

Fauna

Recycling of organic matters

Organic

Matters

Soil

Soil takes thousands of years to form...

 \rightarrow Supply of elements to biosphere

 \rightarrow Control of water composition

Source INRA 2002

Vegetation

650 Gt

SOIL

1500 Gt

An element transfer depends on its speciation

Minerals

The Critical Zone

Anthropogenic pressures

Population growth, urbanization, industrialization, intensive agriculture, deforestation...

Steffen et al. (2011). "The Anthropocene: From Global Change to Planetary Stewardship". AMBIO, 40:739-761

Decrease of soil resource

- 12 % of the world's land are farmed.
- Circa 50% of world soils are degradated (source FAO)

The Critical Zone

Urban, domestic

PAH, VOC, Chloroalkanes, Alkylphenols, Parabens, Phtalates Pharmaceutical residues - Heavy metals

Anthropogenic pressures

- Recent
- Cycles of water, soil, C
- Micropollutants
- All compartments

INTRODUCTORY PART

THE CRITICAL ZONE SOURCES OF RN CHALLENGES : FATE OF RN

Sources of radionuclides

Natural RN – NORM

Air radionuclides Radon 219, 220, 222 *0-150 Bq/m³ in habitats in France*^e

Telluric radionuclides: potassium 40, and decay series of Uranium 238, Uranium 235, Thorium 232 Black shales, granites 300-5 mg.kg⁻¹ TENORM : nuclear industry (mining to reprocessing), coal, fertilizers Cosmogenic radionuclides Tritium, Carbon 14, Krypton 85...

Radioactive decay chain of ²³⁸U

^aDe Vos & Tarvainen, 2006 (Europe); ^bLe Roux (France); ^cBonin & Blanc, 2001 (Europe); ^dSalpeteur & Angel, 2010 (France); ^eIRSN (France)

Artificial RN

Sources of radionuclides

Nuclear weapon test Carbone 14, Strontium 90, Iodine 129 (410 GBq)^a, Cesium 137(948 PBq)^a, Americium 241, Plutonium 238 (0.3 PBq)^a, 239, 240, (13 PBq)^a, 241 (170 PBq)^a...

Radionucléide Half life Emissions ЗH 12.32 yr β 14**C** 5730 yr β ⁶⁰Co 5.27 yr β, γ ⁹⁰Sr 28.78 yr β 1.57 million yr 129, 131 β, γ 8 d 137Cs 30.07 yr β, γ 238Pu 87.7 yr α 24 100 α 239,240,241 **P**II 6 560 α 14290 yr β, α ²⁴¹Am 242 yr α, γ

Reprocessing & Nuclear PP

Tritium, Carbon 14, Cesium 137 (6.24 TBq in 2004, Sellafield)^b, Cobalt 60, Iodine 129, 131 (520GBq in 1997, Sellafield)^c Technitium 99 (1 000 TBq,1984, RP)^d ^a UNSCEAR, 1982; ^b CEFAS, 2004, ^c BNFL, 1997, ^dLuykx, 1986

Artificial RN

Sources of radionuclides

Nuclear accidents UO2, Iodine 129, Cesium 137 (85 PBq)^a, Americium 241, Plutonium 241 (6 000 TBq)^a...

ACCIDENTS MANUFACTURING (e.g. U : ORNL, Pu :Rocky Flats, USA) DISPOSAL HLW WASTES (Pu, SRS USA) IMMERSION OF WASTES MILL TAILING STORAGE (e.g. Fry Canyon, UT, USA

Radionucléide	Half life	Emissions
³ Н	12.32 yr	β
¹⁴ C	5 730 yr	β
⁶⁰ Co	5.27 yr	β, γ
⁹⁰ Sr	28.78 yr	β
129, 131 	1.57 million yr 8 d	β, γ
¹³⁷ Cs	30.07 yr	β, γ
²³⁸ Pu	87.7 yr	α
^{239,240,241} Pu	24 100 6 560 14290 yr	α α β, α
²⁴¹ Am	242 yr	α, γ

^a UNSCEAR, 1982; ^b CEFAS, 2004, ^c BNFL, 1997, ^dLuykx, 1986

Artificial RN

Sources of radionuclides

Maher et al. Inorg. Chem, 2013 (USA)

Thakur et al., Sci. Tot. Environ., 2013, (RN in northern hemisphere, Fukushima)

Skipperud and Salbu, 2018 : selected sources of artificial RN in environment

Sources of radionuclides

Main artificial RN present in the environment, France (IRSN source)

Radionucléide	Half life	Emissions	Descendant	Origin	
ЗН	12.32 yr	β	³ He	Cosmic, Nuclear tests, releases of nuclear and clock industry	
¹⁴ C	5 730 yr	β	¹⁴ N	Cosmic, Nuclear tests, Nuclear and research industry	
⁶⁰ Co	5.27 yr	Β, γ	⁶⁰ Ni	Nuclear industry	
⁹⁰ Sr	28.78 yr	β	⁹⁰ Y	Nuclear tests, Nuclear industry	
131	8 d	β, γ	¹³¹ Xe	Nuclear industry and medicine	
¹³⁷ Cs	30.07 yr	β, γ	¹³⁷ Ba	Nuclear tests, Chernobyl, Nuclear industry	< 5 000 Bq.m (up to 40 000
²³⁸ Pu	87.7 yr	α	²³⁴ U	Nuclear tests, Nuclear industry	<т µвd.m ₂ а
²³⁹⁺²⁴⁰ Pu	24 100 & 6 560 yr	α	235+236U	Nuclear tests, Nuclear industry	

< 5 000 Bq.m-² soils (up to 40 000 in East) <1 µBq.m³ air; 0.01-0.1 mBq.L⁻¹

Behavior and fate in the environment?

Challenges : Fate of RN

Distribution coefficients water-soil Kd (Bq.kg⁻¹ dry soil / Bq.L⁻¹)

	²³⁸ U	²⁴¹ Am	¹³⁷ Cs
Sandy soil	33	2000 (11 – 2.6 10 ⁵)	270
Clayey soil	1500	8100 (45 – 1.5 10 ⁶)	1800
Silty soil	12	990 (600 – 1.6 10 ⁵)	4400
Organic soil (> 30% organic matter)	400	1.1 10 ⁵ (3.6 10 ³ – 3.3 10 ⁶)	270

IAEA, 1994

Need to rationalize knowledge on radionuclide fate and water-soil-plant transfers

INTRODUCTORY PART

THE CRITICAL ZONE SOURCES OF RN CHALLENGES : FATE OF RN

RN lability

RN mobility & migration

Links between RN speciation, fate and impacts

INTRODUCTORY PART WEATHERING & SOIL CHEMISTRY ENVIRONMENTAL RN CHEMISTRY LL RADIOACTIVE WASTES & TENORM IN FRANCE

Primary rock minerals Quartz Feldspars & plagioclases (Framework silicates) Pyroxenes, Amphiboles (Chain silicates) Olivines (Orthosilicates) Illite, Micas, Chlorite (Phyllosilicates) Apathite Sulfides Calcite U minerals

Dissolution

Soil minerals Quartz Feldspars Illite Chlorite Smectites Kaolinite Oxyhydroxydes (Fe, Al, Mn) Phosphates Sulfates, Carbonates Nitrates, Chlorides

Transformation & Neoformation

Primary rock minerals

Thermodynamic stability

Dissolution kinetics and mechanisms

Bio-physicochemical conditions

Soil minerals

Primary rock composition

Thermodynamic stability & Precipitation mechanisms and kinetics of new minerals

Bio-physicochemical conditions

Reactions - Soil solutions

Processes (left to right)	Reaction equation (solution / atmosphere or in solution)		Processes (right to left)
Dissociation H ₂ O	2H ₂ O	OH⁻ + H⁺	Protonation OH-
Dissociation CO ₂	CO ₂ HCO ₃ ⁻	HCO ₃ ⁻ + H ⁺ CO ₃ ²⁻ + H ⁺	Protonation HCO ₃ -
Dissociation of organic acids	ROOH	ROO⁻ + H⁺	Protonation
Complexation of metal ions L= organic ligand or OH ⁻	HL + M ⁺	ML + H ⁺	Decomplexation of metal ions
Oxidation of H_2S / SO_2	H ₂ S + 2O ₂ SO ₂ + ½ O ₂ +H ₂ O	SO ₄ ²⁻ + 2H ⁺	Sulphate reduction
Nitrification NH_4^+ , NO_x , N_2	NH ₄ ⁺ + 2O ₂ No _x + ¼ (5-2x)O ₂ +1/2 H ₂ O N ₂ + ½ O ₂ +H ₂ O	NO ₃ ⁻ + H ₂ O + 2H ⁺ NO ₃ ⁻ + H ⁺ 2NO ₃ ⁻ + 2H ⁺	Denitrification

Reactions – Soil mineral - solutions

Processes (left to right)	Reaction equation (solution / mineral)		Processes (right to left)
Formation metal hydroxyde mineral	M ^{m+} + m H ₂ O	M(OH) _{m(s)} + mH ⁺	Dissolution metal hydroxyde mineral
Oxidation of Fell	Fe ²⁺ + 1/4 O ₂ + 5/2 H ₂ O	$Fe(OH)_3 + 2H^+$	Reduction Fe(OH) ₃
Oidation of FeS	FeS + 9/2 O ₂ + 5/2 H ₂ O	Fe(OH) ₃ SO ₄ ²⁻ + 2H ⁺	Reduction Fe(OH) ₃

Solubility product :	$M(OH)_{m(s)} + mH^+ \leftrightarrow M^{m+} + m H_2O$	$K = {M^{m+}}.{H^{+}}^{-m}$
		{ } denotes activities

But total solubility results from the sum of all M dissolved species

Rock minerals

Granite, diorite, gabbro Basalt, andesite...

Argilites, quartzites, marble, gneiss...

Sands, gravel, silt, clay...

Sandstones, mudrocks, limestones (95% of sedimentary rocks with mudrocks representing 60%) siltstone, shale, gysum, salt, coal...

Rock minerals - Igneous

Framework silicates or « tectosilicates »

Quartz, SiO₂

Two other end-members of felspars : $NaAlS_{i3}O_8$ and $CaAl_2Si_2O_8$ forming solid-solutions (plagioclases)

Most important group in volume of the continental crust

Classification and composition of igneous rocks

Rock minerals

Classification and composition of igneous rocks

Phyllosilicates

Dioctahedral micas : Muscovite KAI₂(AlSi₃O₁₀)(OH,F)₂

Forms a solid solution with $NaAl_2(AlSi_3O_{10})(OH,F)_2$ and $K(Mg,Fe)(Fe,Al)[Si_4O_{10}](OH)_2$

Traces of Cr, Li, Fe, V, Mn, Na, Cs, Rb, Ca, Mg

Trioctahedral micas: Biotite $K(Mg, Fe)_3(AlSi_3O_{10})(OH,F)_2$ Traces of Mn, Ti, Fe, Li, Ba, Na, Sr, Cs, Cl

Rock minerals

Classification and composition of igneous rocks

Inosilicates : Chain silicates

Pyroxenes : XY(SiO₃)₂ 1 bridging O atom

$$\begin{split} X &= Na^{+}, Ca^{2+}, Li^{+}, Mg^{2+}, \\ Mn^{2+}; Y &= Mg^{2+}, Fe^{2+}, \\ Mn^{2+}, Fe^{3+}, Al^{3+}, Cr^{3+}, \\ Ti^{4+} \end{split}$$

Amphiboles are two chain inosilicates (2 bridging O atoms)

Nesosilicates have isolated tetrahedra (olivines, zircons...)

Resistance of primary rock minerals to weathering

Goldich sequence

Soil formation Rock minerals - Sedimentary

73% of cover of the Earth's crust surface but only 8% in volume

95% of sedimentary rocks are represented by sandstones, mudrocks (60%) and limestones

Classification of clays (phyllosilicates)

Negrón-Mendoza, 2011

Mineral Composition	Mudrocks %	Sandstones %
Clay minerals	60	5
Quartz	30	65
Feldspar	4	10 - 15
Carbonate minerals	3	<1
Organic matter, hematite, & others	<3	<1

An interesting feature of U cycling

Basalts : 1 ppm U (Fayek et al. 2011); Granite : 3-5 ppm (Alloway, 2013) with exceptions (50ppm in W Australia, Kreuzer et al., 2010)

- Limestones : 4 ppm U (Alloway, 2013); 12-84 ppm in organic matter rich sediments (Cuney, 2010)
- Phosphorite black shales deposits : up to 700ppm (Bowell et al. 2011)
- Lignites Ebro Valley (Spain) : 500-2500ppm U (Douglas et al., 2011)
- > 20% U in Oklo low-T sedimentary deposits (Gauthier Lafaye et al. 1989)

An interesting feature of U cycling

Evolution of U species on Earth into 4 periods (Cuney, 2010) :

- (1) Mantle melting (3.2 Ga)
- (2) Mantle cooling and cristallisation of U in granites (3.3 2.2 Ga)

(3) Oxygenation of atmosphere at 2.2 Ga : a threshold in Ophteinsified weathering : oxidation of U(IV) to mobile U(VI), increasing diversity in U minerals, eucariot and expanded biomass and production OM-rich sediments capable of U enrichments (Dill, 2010) : U redox cycling leading to mobilization / deposits

(4) Angiosperm plants during Cretaceous increased availability of phosphate which is uranophilic (400 U deposits in sandstones and OM-rich layers) Through tectonic, granites cycled to Earth surface \rightarrow U in sediments \rightarrow sediments with U metamorphosed_at high T-P conditions (Hazen et al., 2009)

Humification involving microbes and algae; mobile U trapped within humus

Weathering has led to U enrichments over geological times

Soil formation Mineral dissolution and precipitation

Dissolution of K-Feldspar

$$K = IAP_{\text{éq}} = \frac{[K^{+}][Al^{3}][H_{4}SiO_{4}]^{3}}{[H^{+}]^{4}}$$

 $\mathsf{KAISi}_3\mathsf{O}_8 + 4\mathsf{H}^+ + 4\mathsf{H}_2\mathsf{O} \leftrightarrow \mathsf{K}^+ + \mathsf{AI}^{3+} + 3\mathsf{H}_4\mathsf{SiO}_4$

K is equilibrium constant determined from Gibbs free energies of formation, [] are activities. Comparaison between IAP calculated from data measured in environmental systems and the K value (composition at equilibrium) indicate if the system is at equilibrium (Q=K, Δ G=0), if reaction is spontaneous (Q<K, Δ G<0) or impossible (Q>K, Δ G>0)

Solubility of Olivine (Forsterite)

 $Mg_2SiO_4 + 4H^+ \leftrightarrow 2Mg^{2+} + H_4SiO_4$

Solubility of Calcite (depend on PCO₂) CaCO₃ + H₂O + CO₂ \leftrightarrow Ca²⁺ + 2HCO₃⁻

$$K = \frac{[Ca^{2^{+}}][HCO_{3}^{-}]}{[H^{+}]}$$

Mineral dissolution and precipitation

Silicates often dissolve incongruently (partial hydrolysis)

2KAISi₃O₈ + 2H⁺ + 12 H₂O \leftrightarrow 2K⁺ + KAI₃Si₃O₁₀(OH)₂ + 6H₄SiO₄ Muscovite Muscovite Orthoclase $2KAI_3Si_3O_{10}(OH)_2 + 2H^+ + 3H_2O \leftrightarrow 2K^+ + 3AI_2Si_2O_5(OH)_4$ 6 log (K) – log (H) Amorphous SiO₂ Kaolinite Quar 5 $Al_2Si_2O_5(OH)_4 + 5 H_2O \leftrightarrow Al_2O_3.3H_2O + 2H_4SiO_4$ Gibbsite Gibbsite Kaolinite Kismectite--3 -5 -2 log (H₄SiO₄)

Mineral dissolution and precipitation

Weathering : K, Ca, Mg and Al are partially leached Clays are amongst major secondary minerals forming under temperate climates

Mineral dissolution and precipitation

Solubility of oxihydroxides

Soil formation

 $M(OH)_{m} + mH^{+} + \leftrightarrow M^{m+} + mH_{2}O$ $K = \frac{[M^{m+}]}{[H^{+}]^{m}}$

 $AI(III)_{tot,diss} = AI^{3+} + AI(OH)^{2+} + AI(OH)^{2+} + AI(OH)^{2+} + AI(OH)^{3+} + AI(OH)^{4}$

For kinetic reason, the more stable phase is often not preferred

Solubility is increased in presence of complexing agents

Mineral dissolution and precipitation

Fe-oxihydroxides formation & Redox

 $M(OH)_m + mH^+ + \leftrightarrow M^{m+} + mH_2O \qquad K = \frac{[M^{m^+}]}{[H^+]^m}$

Fe(OH)₃ ferrihydrite; FeOOH goethite; Fe₂O₃ hematite

Goethite

Eh-pH diagram (Pourbaix) for the Fe-CO₂ - H_2O system, TIC = 10⁻³ mol/kg and total dissolved Fe = 10⁻³ mol/kg at aqueous solid boundaries. Position of the aqueous/solid boundaries for amorphous Fe(OH)₃ with pK_{sp} = 37.1 and goethite with pK_{sp} = 44.2. After Whittemore and Langmuir, 1975.

Clay minerals : an essential role in the soil

Small platelet crystals consisting of a stacking of sheets (phyllosilicates) themselves consisting of octahedral layers AI(OH)3 and SiO4 tetrahedrons.

Clay minerals : an essential role in the soil

KAOLINITE (TO)

 $AI_2 Si_2 O_4 (OH)_4$

No substitutions No permanent charges of layers (halloysite if H2O in interlayer space)

Clay minerals : an essential role in the soil

SMECTITES (TOT)

(Si_{4-x} Al_x)(Al,M1,M2)₂ O₁₀ (OH)₂ K

Isomorphous tetrahedral substitutions Si^{4+}/Al^{3+} (>0.6) Highly permanently charged layers (1.4 to 1.8), compensated by K (by Ca = vermiculites) Isomorphous tetrahedral substitutions Si^{4+/}Al³⁺ (<0.6), octahedral substitutions Al³⁺, Mg²⁺, Fe²⁺ Weakly permanently charged layers (0.6 to 1.2), compensated by cations, waters in interlayers ... A huge vaviety. High surface area – Swell -

High surface area : up to 800 m² / g (poorly-cristallized Fe-oxyhydroxides, smectites)

Swelling properties

```
Cation exchange capacity : 2-15 kaol \rightarrow 20-40 illite 60-
CPRoI of positive charge /kg
```


Biological and organic matter

Oxidation of natural organic matter

Organic compound + O_2 (or other electron acceptor $\rightarrow CO_2$ + H_2O + inorganic nutrients + E

$C_6H_{12}O_6 + O_2 \rightarrow CO_2 + H_2O (+ E)$

A form of respiration, An oxidation reaction Aided by microbial enzymes

- Organic carbon may represent up to 30% of soil composition in forested areas
- Organics (from dead plants, organisms...) is oxidized by inorganic oxidant agents (O, N, S)
- Nutrient elements contained in organic substrate are mineralized : decomposition fees nutrients like N, P, S
- CO₂ escapes to soil atmosphere

Biological and organic matter

1 g of soil contains 100,000 to 1 M bacteria

Biological and organic matter

Reactions at mineral-solution interfaces

Secondary retention of Me, (in)organic ligands...

Reactions at mineral-solution interfaces

- Sorption takes place at specific coordination sites
- Sorption reactions can be described by mass law equations
- Surface charge results from the sorption (surface complex formation) itself
- The effect of surface charge on sorption can be taken into account by applying to the mass law constants for surface reactions a correction factor derived from the electric double-layer theory

SCM

Reactions protonation / deprotonation of surface hydroxyls

$$S - OH + H^+ \xleftarrow{K_+^{int}} S - OH_2^+$$

$$S - OH \xleftarrow{K_{-}^{int}} S - O^{-} + H^{+}$$

Relation intrinsic constants and conditional constants

Constant Capacitance
Diffuse Double
Layer

$$\Psi_d$$

 Ψ_d
 Ψ_d
 Ψ_d
Charge density σ (Coulomb m²)

$$K_{+}^{\text{int}} = K_{+}^{\text{c}} \exp(+F\Psi_{0}/RT) = ([S - OH_{2}^{+}]/([S - OH] \{H^{+}\}))\exp(+F\Psi_{0}/RT)$$
$$K_{-}^{\text{int}} = K_{-}^{\text{c}} \exp(-F\Psi_{0}/RT) = (([S - O^{-}] \{H^{+}\})/[S - OH])\exp(-F\Psi_{0}/RT)$$

Relation Charge – potential (DLM)

$$-\sigma_0 = \sigma_d = -0.1174\sqrt{I}\sinh\left(zF\Psi_0/2RT\right)$$

 $\Psi_0 = \Psi_d$

$$S - OH + xM^{m+} + yH_2O \xleftarrow{K_{\text{species}}^{\text{int}}} (S - OM_xOH_y)^{(xm-y-1)+} + (y+1)H^+$$
$$K_{\text{species}}^{\text{int}} = \frac{\left[\left(S - OM_xOH_y\right)^{(xm-y-1)+}\right] \{H^+\}^{(y+1)}}{\left[S - OH\right] \cdot \{M^{m+}\}^x} \exp((xm-y-1)F\Psi_0/RT)$$

Experimental data and surface complexation modeling of Np(V) adsorbed on Silica

Del Nero et al., Chem Geol. 2004

Reactions at mineral-solution interfaces

Exchange in interlayers of clays :

Cs⁺>K⁺>Na⁺>Li⁺ Ba²⁺>Sr²⁺>Ca²⁺>Mg²⁺

Coulombic interactions & inner-sphere formation !

CEC clays (cmol of positive charge / kg) : 2-15 kaolinite; 20-40 illite; 60-100 montmorillonite

Different processes of secondary retention of Me, (in)organic ligands...

Possible reactions at microbe-water interfaces

Reactions at mineral-solution interfaces

Soil Profile