

Fuel matrix dissolution in a damaged canister.

Kastriot Spahiu, Chalmers, SKB

Why hydrogen?

Sources of hydrogen in the near field, e.g. spent fuel (SF) damaged canister:
-Radiolysis of water: Fuel ⇒ Ionizing radiation (α, β, γ) + H₂O ⇒ Radicals (OH[•],e⁻, H[•] etc.) ⇒ Stable products mainly H₂, O₂ and H₂O₂.
-Anoxic corrosion of iron (the main source):

3 Fe(s)+ 4 H₂O \Leftrightarrow Fe₃O₄(s) + 4 H₂(g)

- Gas phase is formed at e.g. 500 m depth when $P_{H_2} \sim 50$ bar and $[H_2]_{diss} \sim 40$ mM. Even for 1 atm. H_2 , $[H_2]_{diss} \sim 0.8$ mM, a major component of the groundwater.
- The rate of hydrogen production is higher than its depletion by diffusion through bentonite or clay. Predicted several 100 000 years H_2 saturated GW in near field.
- Work in the presence of dissolved H_2 is often reported as carried out under **reducing conditions**. No reduction of U(VI), Np(V) or Tc(VII) by dissolved H_2 at room temperature is reported in literature.
- Redox potentials at pH~8 are ~ -(300-500) mV, since the factor $(RT/nF) \cdot \log[H^+]$ in the Nernst equation is ~ 8.60 mV= 480 mV, reducing only at Pt-electrode.

Actinide oxide mixtures (fuel or α-doped UO₂) and H₂-why?

The KBS-3 concept of spent fuel disposal.

- 500 m water column ~ 50 bar in gas bubble ~ 40 mM $[H_2]_{diss}$
- H₂ production rate by anoxic Fe corrosion > diffusion rate through bentonite clay.
- Many 10³ y H₂-saturated near field, much higher conc. than H₂O₂, O₂ or U(VI), but H₂ inert!

a) Stainless steel autoclave used at Studsvik for leaching of fuel powder under 5 MPa H₂.

b)

b) Picture of the gold basket and central lock.

Data from the first spent fuel leaching under hydrogen at Studsvik, 1998-1999.

Fuel powder leaching in 10 mM NaCl, 2 mM HCO $_3^-$, 5 MPa H₂(g), 70 and 25 °C.

Same data as previous figures, but linear scale for $C = 0 - 2 \cdot 10^{-7}$ M. Right figure presents the same interval for Ar leaching of fuel segment.

Stainless steel autoclave

Quartz lined , quartz sampling tube with internal filter, Peek drop collector. S.F.: \sim 1.7 g powder 0.25-0.5 mm, Ringhals D07-S14, burnup \sim 43 MWd/kgU.

How to draw conclusions from autoclave tests?

- During the autoclave leaching of the fuel sample under H_2 , solution samples are withdrawn from the autoclave and analyzed. Usually the first sample is calculated to have a volume equal to the solution remaining in the sampling tubes from the previous sampling and is discarded, while the two consequent samples are analyzed by ICP-MS or γ -spectroscopy.
- In order to avoid dissolution of fuel fines which would give high unrealistic values, ultracentrifugation is used and the supernatant is immediately acidified to avoid radionuclide loss in container walls due to sorption. This is especially important if An(III), An(IV) or Ln(III) are present in the solution-the losses from sorption could be such that the majority of the nuclide is in the vessel walls and very little in the solution.
- If in consecutive samplings the concentration of a radionuclide increases, from this increase the amount released in solution during a certain time interval can be calculated and together with the surface area of the fuel, its radiation field etc. it can be used to estimate the release rate of this radionuclide.
- The concentrations of actinides and lanthanides, as well as those of certain redox sensitive fission products such as Tc, Mo etc. are important to report in order to judge about the redox state of the given actinide or fission product. Thus, there are no U(VI) compounds which have a solubility lower than 10^{-7} M, one such insoluble U(VI) compound is uranophane, a calcium-uranyl silicate. If we measure U concentrations in the range 10^{-9} M which stay for a long time constant, it means that they result from equilibrium with UO₂(hydr, am) and there is no U(VI) in solution. If the concentration is 10^{-8} M, there is a part of U(10^{-9} M) which is U(IV), while the rest is U(VI) in solution. When the concentrations of Mo reach 10^{-9} M starting from higher levels, then we can conclude that the molybdate ($MoO_4^{2^-}$) ion which is usually released from the pre-oxidized fuel layer is reduced to Mo(IV) as $MoO_2(s)$ which has a solubility around 10^{-9} M and the same holds for Tc, which is released as Tc(VII) per-technetate ion (TcO_4^{-}) from the pre-oxidized fuel layer. The other actinide oxides have also similar solubilities, NpO₂(s) at about 10^{-9} M while PuO₂(s) about 10^{-10} M.

The kinetics of release of Cs and Sr under 5 bar H₂ or Ar.

Negative values of Incremental Fractional Release (IFR) plotted in x-axis.

4U6: Starting conditions: $p(H_2) = 1$ bar, T = 25 °C; SF ($\emptyset = 250-500 \mu m$)

- The [U] decrease is steadily accompanied by Tc (initially), Nd, Eu and Np (co-precipitation?), despite air intrusion
- The H₂ pressure increase seems to have no evident influence on the system, probably also due to measurable O₂ levels.

IFR for Cs, Sr, Mo, 1 bar H₂

4U6: Preparation for XPS analysis on non-leached and leached spent fuel fragments

4U6: XPS results on non-leached (#1) and leached SF fragments (#2, #3) (INE).

- XPS results show that the initial [U] derives from a pre-oxidized surface layer (particle #1). Cs was also found on particle #1. Dissolution of the pre-oxidized layer results in initial increase of FIAP for Cs, (Sr+Zr) and Mo.
- The surface of leached fragments (particle #2 and #3) are almost identical to pure UO₂. No Cs could be detected.

SKB

Long term Cs and U data from the MOX test.

Leaching of rim containing fraction of HBU fuel (67 MWd/kg), ITU.

Fors et al, J. Nucl. Mater. 233(2009)234-238.

Schema of the flow through experimental setup

Röllin et al., J. Nucl. Mater, 111(2001)222-333

U, Cs based dissolution rates, different pH and redox conditions.

Characteristics of fuel leaching for [H₂] > 0.8 mM - the role of surfaces.

- **Observed:** a) Complete absence of O_2 , H_2O_2 b) Decreasing with time: concentrations of U, Np, Pu, Tc,... and release rates of Sr,Cs,... c) Reduction of the UO₂ surface (α , γ or fuel + H₂).
- Radiolytic modelling predicts only a decrease of the levels of radiolytic oxidants and of U release.
- Evidence on fuel surface reduction of radionuclides with H_{2,diss}.

-Chalmers: 99% of precipitated U on fuel surface, very little in vessel rinse.

- **INE-FZK**: Co-dissolution test SF+Fe in 5 M NaCl under Ar from start and 2.8 bar H_2 after 4 years. Fe(s), Fe₃O₄ and GR as corrosion products, absence of U sorption/precipitation on Fe.

- In the case of SF, β and γ -radiations also present and ε -particles in UO₂ matrix.
- -Recent tests **INE**: Br addition to 5 M NaCl scavenges OH-radicals, reacting 250 times faster than H_2 . Measured oxidizing bulk solution under γ -radiation. Only surface processes responsible for absence of radiolytic O_2 or U oxidation in spent fuel case.
- Brczkowski et al, J. Nucl Mat. 346(2005)16: Electrochemistry of SIMFUEL electrodes under low P_{H 2}. Eriksen et al, J. Nuc.Mat. 2007, Trummer et al, 2008: Effect of Pd inclusions on UO₂. Cui et al, Radiochim Acta 2004. extracts from fuel ε-particles, tests with 10 % H₂.

-The galvanic coupling with UO₂ protects all or is there any effect of the AnO₂ surface itself?

• Fuel tests with lower $[H_2]$ (0.06, 0.08, 0.24 mM): presence of H_2O_2 , increasing Cs, Sr, Mo.

How to imitate old spent fuel (e.g. 1000 y old)?

- In fresh spent fuel a few years after discharge the β-γ radiation is very strong and dominates. Both these radiations have low LET(Linear Energy Transfer), i.e. long range and are radical rich.
- In our PA analysis the first contact of fuel with water is predicted after several (hundred) thousand years, so the authorities have raised the question of the difference of the fuel radiation field used in spent fuel experiments and the real radiation that will be present when it contacts groundwater in a damaged container.
- In this case the alpha radiation dominates, while the β , γ -radiations have decayed to insignificant levels.
- Alpha radiation is a high LET radiation and produces mainly molecular products H₂O₂ and H₂, as well as a few radicals outside the alpha tracks.
- Therefore the last years several experiments testing so-called alpha doped UO₂, i.e. UO₂(s) mixed homogeneously with various amounts of an alpha emitting isotope, such as ²³³U or ²³⁸Pu have been carried out under various conditions.
- Up to now, it has not been possible to add inactive fission products together with the alpha emitting isotope, so the solid phase imitates well the alpha radiation levels of "old" spent fuel, on the other hand is more easy to oxidize than spent fuel because of the absence of lower valence cations in the UO_2 matrix.

Alpha activity decay with time in spent fuel

Studies with α - doped UO₂

Muzeau et al., J. Alloy Comp. 467(2009)578.

XPS surface analysis after annealing and storage

Test in carbonate solutions under Ar. New **threshold**: 18 MBq/g or 10 000 y

Autoclave test (ITU) with 10% 233 U doped pellet under H₂ and Ar.

ITU-Measured total U concentrations, 10% ²³³U pellet leached under H₂.

Carbol et al, Geochim. Cosmochim. Acta 73 (2009) 4366

Back to H₂: Two tests with highly doped UO₂

Muzeau, 2009: α -doped UO₂ (385 MBq/g or 50 y fuel) tested in carbonate solutions under Ar or 1 bar H₂

SCK.CEN: UO₂ powder (245 MBq/g or 150 y fuel) tested in carbonate solutions under 10 bar H₂

Reactivity of α -emitting AnO₂ surfaces

- The property of causing recombination of O_2 with H_2 on alpha particle emitting light actinide surfaces more general than in our tests.
- Haschke et al. 1997 report consumption of 2:1 D₂+O₂ mixtures to form water on the surface of ²³⁹PuO₂. LANL studies show that these recombination reactions over pure and impure actinide oxides occur at much faster rates than radiolysis events [Kelly and Paffet, WM'02 Conf.].
- NpO₂ doped with ²⁴⁴Cm consumes H₂ by reacting it with O₂ [Icenhour et al, Nucl. Techn. 146(2004)206].
- Bauhn et al. 2018 used D₂ to prove production of increasing concentrations of HDO in water contacting SIMFUEL or 24%Pu fresh MOX pellets:

 $H_2O_2 = 2OH \cdot (sorbed)$ $2OH \cdot + D_2 = 2HDO$

• The undoped **UO**₂ surfaces may have a limited capability to activate H₂ but no effect on H₂+O₂ [Devoy et al, MRS 2004] or H₂+ H₂O₂ [Nilsson et. al. JNM 2007] could be detected (basic catalysts poisoned by water). This seems to be a property of the radioactive actinide oxide surfaces.

Recombination reactions

Radiolytic gas production from water sorbed on ²⁴⁴Cm doped NpO₂(s) [Icenhour et al., Nucl. Tech. 2004]

Photograph of experimental aparatus.

$PuO_2(s)$ causes recombination of H_2 with O_2 to form water.

PVT experiment: 2:1 mixture D₂+O₂ over PuO₂(s), 25 °C.

Haschke et al., J. All.Comp.1996.

Interfacial radiolysis

- Experimental and modelling studies on homogeneous water radiolysis carried out for decades, mechanistic studies of radiolysis of water sorbed on surfaces of oxides is quite recent.
- Study of γ -radiation induced H₂ generation in oxides, [Petrik et al, J. Phys Chem, 2001].

Oxides with band gap ~5eV show increased H₂ production due to excitons causing dissociation of water molecules (H-O-H bond energy 5.1 eV). Possible H₂+OH \cdot = H₂O+H \cdot

- $UO_2(s)$ included in another study [LaVerne et al., J.Phys. Chem. 2003], reporting much higher radiolytic yields of H₂ (>10 fold) from adsorbed water than from free water, while O₂ production below detection limit on UO₂ and ZrO₂ surfaces.
- Energy, charge and matter can be transferred through the interface, while catalytic or steric effects can alter the reactivity or decomposition of adsorbed molecules. Excitons, slow electrons or recombination of electron-hole pairs mentioned as potential sources of high H₂.
- [Stutz et al, J.Phys Chem, 2004]: effect of oxygen vacancies (created by sputtering UO₂(s) surface with heavy ions) in hydrogen evolution following water adsorption. Similar ones created by alpha recoil atom. Contribute to the release of hydrogen by dissociative adsorption of a water molecule.
- Difficult to propose mechanism from fuel studies, mechanistic studies as interfacial radiolysis ones may contribute in the quantification and understanding of the observed effects.

Thank you!

