The European Commission's science and knowledge service

32

·

Joint Research Centre

de.

Fuel fabrication and evolution of structural properties under irradiation

Rudy Konings

Content

1. Introduction

- 2. Properties of Uranium dioxide (and MOX)
- 3. Fuel Fabrication
- 4. Radiation effects
- 5. Behaviour under irradiation

Thursday morning

Thursday afternoon

Friday morning

Introduction

Nuclear Fuel

The only natural fuel (0.72%)

— Requires reprocessing

Nuclear Fuel

- Low neutron capture cross section of non-fissile elements
- High fissile density
- No chemical reaction with cladding or coolant
- Favourable physical properties
- High mechanical stability (isotropic expansion, stable against radiation)
- High thermal stability (no phase transitions, no dissociation)

Nuclear Fuel: Requirements

- During normal operation:
 - Keep its shape
 - No melting should occur
 - Interaction with the cladding should not lead to critical mechanical or chemical interaction
- During accidental condition:
 - No excessive exothermal reactions
 - Limit the amount of volatile species
 - Limited interaction with other core and building materials

Nuclear Fuel: Types and variations

	Melting	Density	U-density
	point (K)	(g cm ⁻³)	(g cm⁻³)
U	1308	19.05	19.05
UO ₂	3073	10.95	9.6
UC	2798	13.63	12.97
UN	3123	14.32	13.53

Fuel type		
Metal		
Oxide		
Nitride		
Carbide		
Fluoride (salt)		

Nuclear Fuel: Types and variations

Fuel type		
Metal		
Oxide		
Nitride		
Carbide		
Fluoride (salt)		

Light-water	PWR, BWR	UO ₂
Heavy-water	CANDU	UO ₂
Graphite-moderated	AGR, RBMK	UO ₂
High-temperature gas	HTR	UO ₂ ,
cooled		(ThO ₂ , UC)
Sodium-cooled	SPX, Monju	(U,Pu)O ₂
	EBR-II	(U,Pu)
		(U,Pu,Zr)
	PBTR	(U,Pu)C
Molten salt	MSRE	LiF/BeF ₂ /ThF ₄ /UF ₄

Nuclear Fuel: Types and variations

Nuclear Fuel: Light Water Reactors

Nuclear Fuel: LWR temperature profile

Nuclear Fuel: Margin to melting

European Commission

Nuclear Fuel: What affects the margins?

Properties of Uranium dioxide

Fluorite-type face-centered cubic structure

$$2\left[O^{2-}\right]_{lattice} \rightleftharpoons \mathcal{O}_2(g) + 4e^-$$

 $\Delta \overline{G}(O_2) = RT \ln p(O_2)$

The oxygen potential of UO_2 as a function of the O/U ratio and temperature.

Key thermal properties for safety assessment:

- Thermal expansion
- Melting temperature/Liquidus temperature
- Heat capacity

Thermal conductivity

Thermal diffusivity

Strongly related to the phonon structure of the material

Phonon theory predicts that for an **ideal crystal** the heat capacity is **zero** at T = 0 K and approaches the value **3n***R* (*Dulong-Petit* limit) at high temperature

Temperature

Oxygen Frenkel Pair (OFP) formation on the O sublattice

The heat capacity of UO_2 as a function of temperature.

Source: Pavlov et al. Acta Mater. 139 (2017) 138.

European Commission

The thermal expansion of UO_2 expressed as $\Delta L/L$ a function of temperature.

$$\lambda = \lambda_{\text{phonon}} + \lambda_{\text{electronic}}$$

• The phonon contribution dominates at low temperature (< 2000 K)

$$\lambda = \frac{1}{A + BT}$$
Phonon Phonon Phonon Phonon

- The electronic contribution becomes significant at high temperatures
- The phonon contribution is affected by impurities and microstructure changes

The thermal diffusivity of UO₂ determined by LAF and CLASH instruments in JRC Karlsruhe.

Corrected to 95% theoretical density

Source: Vlahovic et al. J. Nucl. Mater. 499 (2018) 504.

European Commission

- Plutonium dioxide also has a fcc structure
- Pu⁴⁺ has a slightly smaller ionic radius
- Pu⁴⁺ has a different electronic structure
- PuO₂ is very poorly soluble in acids

Böhler et al., J. Nucl. Mater. 448 (2014) 330

The revised UO_2 -Pu O_2 phase diagram experimentally determined by laser melting studies and modelled using the CALPHAD approach

Melting temperature of PuO₂ was found to be about 300 K higher than accepted values from the 1960s

Source: Böhler et al. J. Nucl. Mater. 448 (2014) 330. .

Böhler et al., J. Nucl. Mater. 448 (2014) 330

Source: Böhler et al. J. Nucl. Mater. 448 (2014) 330. .

The thermal conductivity of $(U,Pu)O_2$ as a function of the Pu concentration

Commission

Source: Konings et al., In: The Chemistry of Actinides and Transactinide Elements, 4th Edition., Volume 6, Chapter 34, p. 3665-3812, Springer Netherlands, 2010

European Commission

O/M

Pros and cons of UO_2

Pro

...

. . .

- Isotropic expansion (fcc)
- High melting point
- Forms solid solution with PuO₂

Con

. . .

. . .

. . .

- Low thermal conductivity
- Low fissile density

Fuel fabrication

Fuel Fabrication

Provide a compact that :

- is mechanically stable
- has the required density
- has the right dimensions
- has the right microstructure
- is free from impurities

- no cracks, no chips
- > 95% theoretical density
- very small tolerance (μm's)
- grain size
- Neutron poisons, halides

Fuel Fabrication: Typical specification

		Unit	Target value		
Outer diameter		mm	8.05 ± 0.01		
Pellet height		mm	8 ± 1		
Visual aspect		-	No cracks, no chips		
Pellet density		%TD	96 ± 1		
Grain size		μm	5-25		
Pore size	mean	μm	100		
	limit	μm	500		
	condition		< 10% of the p	ores > 100 µm	
Stoichiometry		O/M	2.000 ± 0.002		
Thermal stability		-	< 1.5% density change		
Impurities		ppm	B, Cd, Gd < 1	Co, N < 75	
			F < 10	C, Ni, Ca < 100	
			Cl < 15	Most other	
			Th < 60	elements < 200	
H ₂ O content		ppm	< 100		

The ADU process: aqueous process

 $2\mathsf{UF}_6 + 7\mathsf{H}_2\mathsf{O} + 2\mathsf{NH}_3 \rightarrow (\mathsf{NH}_4)_2\mathsf{U}_2\mathsf{O}_7 + 12\mathsf{HF}$

 $(NH_4)_2U_2O_7 \rightarrow U_3O_8 \rightarrow UO_2$

 $(NH_4)_2U_2O_7$

The AUC process: aqueous process

 $UF_6 + 5H_2O + 10NH_3 + 3CO_2 \rightarrow$

 $(NH_4)_4 UO_2 (CO_3)_3 + 6NH_4 F$

 $(NH_4)_4 UO_2 (CO_3)_3$

 $(NH_4)_4UO_2(CO_3)_3 + H_2 \rightarrow$ $UO_{2} + 3CO_{2} + 4NH_{3} + 3H_{2}O_{3}$

The IDR process: integral dry route

 $UF_6 + 2H_2O (vap) \rightarrow UO_2F_2(sol) + 4HF$

 $UO_2F_2(sol) + H_2O \rightarrow UO_3 + 2HF$

 $UO_3 + H_2 \rightarrow UO_2 + H_2O$

	ADU	AUC	IDR
Specific surface (m ² /g)	2.8-3.2	5.0-6.0	2.5-3.0
Raw density (g/cm ³)	1.5	2.0-2.3	0.7
Tap denisty (g/cm ³)	2.4-2.8	2.6-3.0	1.65
Mean size (microns)	0.4-1.0	8	2.4
Morphology	spheroids	Porous aggl.	dendrites
O/U ratio	2.03-2.17	2.06	2.05
Fluor (ppm)	30-50	30-70	<25
Carbon (ppm)	40-200	120	20
Iron (ppm)	70	10-20	10
Boron (ppm)	0.2	0.1	<0.05

European Commission

Fuel Fabrication: Sintering

Schematic representation of sintering. The dotted lines indicated the as-fabricated particles, the solid lines the necking as a result of mass transport.

- Transforms a compacted powder to a dense object
- Homogenizes composition (partially)
- Based on thermally activated diffusion
- Principally surface diffusion

Fuel Fabrication: Sintering

- Atmosphere: Ar+H₂
- Temperature: 1600-1700 °C
- Duration: 6 hours at max

Density changes from $\rho_{green} \approx 50 \% \text{ TD to}$ $\rho_{final} \approx 95 \% \text{ TD}$

TD = theoretical density

Fuel Fabrication: Grinding

- Pressed pellets have an hours glass shape → Needs to be corrected
- To meet the specification and tolerances

Fuel Fabrication: Controls

- Dimensions
- Density
- O/U
- Microstructure
- Impurities
- Stability

- Visual, Optical
- Archimedes, geometric
- X-ray, thermal gravimetric analysis
- Ceramography
- Chemical analysis (ICP-MS)
- Re-sintering test

Fuel Fabrication: Microstructure

European Commission

Grain size UO₂: 8 micro-meter

MOX Fabrication: Traditional

Source: European Communities

MOX Fabrication: MIMAS - industrial

Source: ORANO

MOX Fabrication: MIMAS - industrial

Source: Oudinet et al. J. Nucl. Mater., 375 (2008) 86

MOX Fabrication: JMOX

Pros and cons of UO_2

Pro

- Isotropic expansion (fcc)
- High melting point
- Forms solid solution with PuO₂
- Straightforward fabrication

Con

- Low thermal conductivity
- Low fissile density
- Dirty process (dust)
- Many steps (MOX)
- Proliferation risk (MOX)

Radiation effects

Radiation effects: Fission

Radiation effects: Energy loss

Particles passing through matter loose energy via two interaction processes:

• <u>Nuclear Collisions</u> (Rutherford scattering): direct collision with atoms (nucleus)

• <u>Electronic Collisions</u> (Born scattering): dissipating the energy to the electrons

Radiation effects: Energy loss

Radiation sources to be considered

• Neutrons

minimum displacement energy ~100 eV in LWR's neutrons are moderated (< 1eV) electronic scattering

α-decay

β-decay

Fission fragments

Atomic displacements

- Radiation defects lead to expansion of the lattice
- Equilibrium between creation and annihilation occurs after about 1 dpa

Source: Wiss & Konings (2013), In: Properties of Fluorite Structure Materials. (P. Vajda and M. Costandini, Eds.). Nova Publishers 2013

Radiation effects: Lattice defects

• Point defects

• Extended defects

• Dislocations (line, loop)

Radiation effects: Lattice defects

- (a) interstitial impurity atom
- (b) edge dislocation
- (c) Self-interstitial atom
- (d) Vacancy
- (e) precipitate of impurity atoms
- (f) vacancy-type dislocation loop
- (g) interstitial-type dislocation loop
- (h) Substitutional impurity atom

TEM micrograph of 10 wt% 233 U-doped UO₂ showing the presence of prismatic loops resulting from the alpha-damage

Source: European Communities

Source: European Communities

European Commission

TEM micrograph of 10 wt% 233 U-doped UO₂ after annealing at 1100 K showing the presence of Helium gas bubbles

Source: European Communities

Radiation effects: Fission product recoil

Radiation effects: Fisson product recoil

Calculated radial temperature distribution of a fission track in UO_2 as a function of time. Calculations were made for the first nm of the material.

Source: Wiss & Konings (2013), In: Properties of Fluorite Structure Materials. (P. Vajda and M. Costandini, Eds.). Nova Publishers 2013

Radiation effects: Fisson product recoil

	Energy (keV)	Range (µm)	(d <i>e/</i> dx) _n	(d <i>e</i> /dx) _e	No. of defects
Light fission product	95,000	9	0.03	0.97	40,000
Heavy fission product	70,000	7	0.06	0.94	60,000
α particle	5,500	15	0.01	0.99	200
α recoil atom	95	0.02	0.90	0.10	1,500

Radiation effects : Fisson product recoil

European Commission

Source: Wiss & Konings (2013), In: Properties of Fluorite Structure Materials. (P. Vajda and M. Costandini, Eds.). Nova Publishers 2013

Pros and cons of UO_2

Pro

- Isotropic expansion (fcc)
- High melting point
- Forms solid solution with PuO₂
- Straightforward fabrication
- Stable against irradiation

Con

- Low thermal conductivity
- Low fissile density
- Dirty process (dust)
- Many steps (MOX)
- Proliferation risk (MOX)

Behaviour under irradiation

- The UO₂ expands with temperature (dilatation)
- During irradiation UO₂ swells about 1 vol% per 10 MWd/kgU as results of fission product accumulation
- Volume increase partially compensated by
 - closing of porosity
 - closing of pellet "dishes"
 - closing of gap

UO₂, 53 GWd/t

UO₂, 66 GWd/t

Source: European Communities

Irradiation behaviour: Cracking & Cracking

- Difference in thermal expansion UO₂ and cladding
- The cladding creeps down (shrinks) due to the accumulation of radiation damage
- Once the gap is closed "Pellet Cladding Mechanical Interaction" occurs

Irradiation behaviour: Plutonium distribution

The Pu and Nd concentration profiles for irradiated UO₂ of 97.8 MWd/kgU pellet average burnup measured by EPMA. Source: Manzel and Walker, J. Nucl. Mater., 301 (2002) 170).

European Commission

Source: Manzel and Walker, J. Nucl. Mater., 301 (2002) 170).

Relative radius r/r_0

Source: Wiss & Konings (2013), In: Properties of Fluorite Structure Materials. (P. Vajda and M. Costandini, Eds.). Nova Publishers 2013

Source: Manzel and Walker, J. Nucl. Mater., 301 (2002) 170).

The Cs and Xe concentration profiles for irradiated UO₂ of 97.8 MWd/kgU pellet average burnup measured by EPMA. (After Manzel and Walker, 2002).

Elemental distribution maps of fission products in the High Burnup Structure near pellet rim.

Source: Walker et al. (2009), J. Nucl. Mat.393:212

Source: Walker et al. (2009), J. Nucl. Mat.393:212.

High Burnup Structure formation in Pu-rich island in irradiated Mixed Oxide fuel

European Commission

Source: European Communities ©

Fissions yields of ²³⁵U (blue) in a thermal neutron spectrum and ²³⁹Pu (red) in a fast neutron spectrum.

- 1) Dissolved in the matrix: Rb, Sr, Y, Zr, Nb, Te, Cs, Ba, La, Ce, Pr, Nd, Pm, Sm, Eu
- 2) Oxide precipitates at grain boundaries: Rb, Sr, Zr, Nb, Mo, Se, Te, Cs, Ba
- 3) Metallic precipitates: Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Se, Te
- 4) Gases: Kr, Xe
- 5) Volatiles: Br, Rb, I, Cs, Te

TEM micrograph of a UO_2 fuel irradiated to high burnup showing a large fission product inclusion, dislocation loops, fission product precipitates sometimes pinning dislocation lines.

> European Commission

Source: European Communities ©

TEM micrograph of a UO_2 fuel irradiated to high burnup showing a large fission product inclusion, dislocation loops, fission product precipitates sometimes pinning dislocation lines.

Source: European Communities ©

Commission

Irradiation behaviour: Fission gases

- 1. Atomic diffusion in the lattice (thermal and radiation induced)
- 2. Capture in intergranular bubbles
- 3. Migration of bubbles to grain boundaries
- 4. Resolution of gas
- 5. Aggregation to closed porosity
- 6. Venting via open porosity channels

Source: Konings et al., In: The Chemistry of Actinides and Transactinide Elements, 4th Edition., Volume 6, Chapter 34, p. 3665-3812, Springer Netherlands, 2010

Irradiation behaviour: Fission gases

- 1. Small nano-meter sized bubbles
- 2. Density 10²³-10²⁴ m⁻³
- 3. Reduce D_{eff} by reducing the amount of gas available for migration
- 4. Nucleated in lines in the wake of fission fragments

Irradiation behaviour: Fission gases

Halden treshold: the relation between the fuel centerline temperature and burnup for a (arbitrary) 1% fission gas release, based on the in-pile experiments performed in the Halden test reactor (Norway).

Irradiation behaviour: Thermal conductivity

$$\lambda = \frac{1}{A(T_{irr}, T_{an}, bu) + B(T_{irr}, T_{an}, bu)T}$$

- *T_{ann}*: maximum temperature (700-1450 K) reached during annealing
- *bu*: burn-up (0 to 100 GWd/t)
- Adaptation to in-pile thermal conductivity: $T_{irr}=T_{ann}=T$

Irradiation behaviour: Thermal conductivity

Irradiation behaviour: Thermal conductivity

Dominant effects (Ronchi et al., 2004b):
1. Soluble, non-volatile fission products
2. Fission gas and Cs content and its state
3. Irradiation defects (both present at end-of-life and created during subsequent storage by self-irradiation)

- 4. Precipitation of the fission gasses
- 5. Annihilation of irradiation defects for thermal recovery conditions

Irradiation behaviour: Melting point

Change in melting temperture of irradiated fuel as a function of burnup (Yamanouchi et al.)

Source: Yamanouchi et al., J. Nucl. Sci. Technol. 25 (1988) 528.

Irradiation behaviour: Fission gas release

Commission

Konings et al., Nature Materials 14 (2015) 247

European Commission

Source: Konings et al., In: The Chemistry of Actinides and Transactinide Elements, 4th Edition., Volume 6, Chapter 34, p. 3665-3812, Springer Netherlands, 2010

Konings et al., Nature Materials 14 (2015) 247

Source: Konings et al. Nature Materials 14 (2015) 247

Konings et al., Nature Materials 14 (2015) 247

European Commission

Source: Konings et al. Nature Materials 14 (2015) 247

SEM after annealing at T = 1900 K Un-oxidised

European Commission

SEM after annealing at T = 1900 K Pre-oxidised

Source: Hiernaut et al., J. Nucl. Mater. 372 (2008) 215

Irradiation behaviour: CsI formation?

 $Cs + \frac{1}{2}I_2(g) = CsI$

 $2Cs + 2Te = Cs_2Te$

 $2Cs + MoO_2 + \frac{1}{2}O_2(g) = Cs_2MoO_4$ $2Cs + UO_2 + \frac{1}{2}O_2(g) = Cs_2UO_4$

Thermodynamically stable

Can form at low oxygen potential

Irradiation behaviour: CsI formation?

Cesium iodide

- Fragments: Cs⁺, I⁺, CsI⁺ (monomer), Cs₂I⁺, Cs₂⁺, I₂⁺ (dimer)
- I⁺/CsI⁺ ≈ 3:1
- Parallel release profiles

Source: European Communities ©

Irradiation behaviour: CsI formation?

Zappey et al., to be published

Irradiated fuel (BWR, 55 MWd/kg)

- Absolute intensities similar to Simfuel
- No Csl⁺ ions (but higher background)
- Some temperature regions with parallell release

Conclusion: No clear evidence for
CsI formation in irradiated fuel *Insufficient reaction sites?*

• *Gamma radiation?*

Nuclear Fuel: What affects the margins?

Further reading

- R.J.M. Konings, T. Wiss and C. Guéneau, Nuclear Fuels. In: The Chemistry of Actinides and Transactinide Elements, 4th Edition (L.R. Morss, J. Fuger and N.M. Edelstein, Eds.), Volume 6, Chapter 34, p. 3665-3812, Springer Netherlands, 2010.
- R.J.M. Konings (Ed.), *Comprehensive Nuclear Materials*. Elsevier Science & Technology, Oxford, 2012.

Thank you

Any questions?

You can find me at rudy.konings@ec.europa.eu

